Social Research Glossary A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Home
Citation reference: Harvey, L., 201219, Social Research Glossary, Quality Research International, http://www.qualityresearchinternational.com/socialresearch/ This is a dynamic glossary and the author would welcome any email suggestions for additions or amendments.

A fastpaced novel of conjecture and surprises 
_________________________________________________________________
Tautology
A tautology is a proposition that is true by definition (such as 'all mothers are female') or one in which the same thing is said twice in different words (e.g. 'they followed one after the other in succession').
Tautology can be extended to refer to a whole argument. In which case the outcome of the tautological argument will logically always be true irrespective of the truth or falsity of the propositions. A simple example is 'either all grass is green or it is isn't. A more complex example is represented symbolically by: (p or q) or notp, where it doesn't matter what combination of true or false are assigned to p and q the outcome will be true.
Tautologies are true because of the nature of the logical operators, independently of the veracity of the propositions made about the real world. This has lead to tautologies as being seen as vacuous, saying nothing, and as irrelevent to developing knowledge about the world.
Tautology, in logic, a statement so framed that it cannot be denied without inconsistency. Thus, "All humans are mammals" is held to assert with regard to anything whatsoever that either it is not a human or it is a mammal. But that universal "truth" follows not from any facts noted about real humans but only from the actual use of human and mammal and is thus purely a matter of definition.
In the propositional calculus, a logic in which whole propositions are related by such connectives as ⊃ ("if…then"), · ("and"), ∼ ("not"), and ∨ ("or"), even complicated expressions such as [(A ⊃ B) · (C ⊃ ∼B)] ⊃ (C ⊃ ∼A) can be shown to be tautologies by displaying in a truth table every possible combination of truthvalues—T (true) and F (false)—of its arguments A, B, C and after reckoning out by a mechanical process the truthvalue of the entire formula, noting that, for every such combination, the formula is T. The test is effective because, in any particular case, the total number of different assignments of truthvalues to the variables is finite, and the calculation of the truthvalue of the entire formula can be carried out separately for each assignment of truthvalues.
The notion of tautology in the propositional calculus was first developed in the early 20th century by the American philosopher Charles Sanders Peirce, the founder of the school of pragmatism and a major logician. The term itself, however, was introduced by the Austrianborn British philosopher Ludwig Wittgenstein, who argued in the Logischphilosophische Abhandlung (1921; Tractatus LogicoPhilosophicus, 1922) that all necessary propositions are tautologies and that there is, therefore, a sense in which all necessary propositions say the same thing—viz, nothing at all....
See also
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Home